Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Sehriman Atalay, ${ }^{\text {a }}$ * Ufuk Çoruh, ${ }^{\text {b }}$ Nesuhi Akdemir ${ }^{\text {c }}$ and Erbil Ağar ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Physics, Ondokuz Mayıs
University, TR-55139 Samsun, Turkey,
${ }^{\text {b }}$ Computer Education and Instructional
Technology, The Faculty of Education, Ondokuz Mayıs University, TR-55200-Atakum Samsun,
Turkey, and ${ }^{\text {c }}$ Ondokuz Mayıs University, Art and Science Faculty, Department of Chemistry 55139 Samsun, Turkey

Correspondence e-mail: atalays@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.044$
$w R$ factor $=0.120$
Data-to-parameter ratio $=19.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

C—H $\cdots \pi$ interactions in 4,5-bis(2-iso-propyl-5-methylphenoxy)phthalonitrile

The supramolecular structure of the title compound, $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}$, is defined by weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. The peripheral aromatic rings lie in approximately orthogonal planes, conferring on the molecule a twisted conformation.

Comment

Substituted phthalonitriles are generally used for preparing symmetrically and unsymmetrically peripherally substituted phthalocyanine complexes and subphthalocyanines (McKeown, 1998; Leznoff \& Lever, 1989-1996). The annual worldwide production of phthalocyanines, used in the preparation of dyes and pigments, is around 80000 tons (Worhle, 2001). Phthalocyanines are excellent pigments with good thermal and chemical stabilities. They have been widely studied for many different purposes, finding applications in fields including liquid crystals, chemical sensors, photodynamic therapy for cancer (Decreau et al., 2001), non-linear optics, molecular electronics, gas sensors, photosensitisers, catalysts, semiconducting materials, photovoltaic cells and electrochromic displays (McKeown, 1998; Leznoff \& Lever, 1989-1996). For these reasons, the structures of substituted phthalonitrile derivatives have been a subject of many studies in our laboratory. Examples include 4,4'-(N-phenyl-2, 2^{\prime} iminodiethanoxy)diphthalonitrile (Ocak et al., 2003), 4-(2-isopropyl-5-methylphenoxy)phthalonitrile (Atalay et al., 2003), 4,4'-[2,2'-(piperidine-1,4-diyldiethylene)di(tosylimino)]diphthalonitrile (Çoruh, Akdemir, Ağar, VazquezLopez \& Erdönmez, 2002) and dimethyl 2,2'-(4,5-dicyano-ophenylenedithio)diacetate (Çoruh, Akdemir, Ağar, Kim \& Erdönmez, 2002).

(I)

Compound (I) (Fig. 1) contains a phthalonitrile moiety which is 4,5 -disubstituted by 2-isopropyl-5-methylphenoxy groups, giving a system of three benzene rings: C1-C6 (ring A), C9-C14 (ring B) and C19-C24 (ring C). The dihedral angles between these rings are $67.8(6)^{\circ}$ for $A / B, 81.8(5)^{\circ}$ for A / C and $82.5(5)^{\circ}$ for B / C, indicating absence of coplanarity between the three rings and a twisted conformation for the molecule. The reason for this conformation is steric. The

Received 7 January 2004 Accepted 22 January 2004 Online 30 January 2004

Figure 1
A view of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids. H atoms have been omitted for clarity.

Figure 2
Packing showing the weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions as dotted lines.
placement of the cyano groups and their triple-bond lengths lie very close to previously reported examples (Ocak et al., 2003; Atalay et al., 2003; Çoruh, Akdemir, Ağar, VazquezLopez \& Erdönmez, 2002; Çoruh, Akdemir, Ağar, Kim \& Erdönmez, 2002).

The geometry around the O atoms shows good agreement with the literature (Atalay et al., 2003; Ocak et al., 2003), with the values for the $\mathrm{C}-\mathrm{O}-\mathrm{C}$ angles $\mathrm{C} 19-\mathrm{O} 2-\mathrm{C} 5$ and $\mathrm{C} 9-$ O1 - C4 being 116.65 (16) and 120.75 (12) ${ }^{\circ}$, respectively. Four $\mathrm{C}-\mathrm{H} \cdots \pi$ intermolecular interactions can also be observed in (I) (Fig. 2), thereby completing the capacity of the aromatic π-electrons to act as acceptors. These weak interactions are reported in Table 2. It has been recognized that these weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions play an appreciable role in determining the conformation of organic compounds (Umezawa et al., 1999).

Experimental

5-Methyl-2-(1-methylethyl)phenol $(5.11 \mathrm{~g}, 34.02 \mathrm{mmol})$ and 4,5 -di-chloro-1,2-dicyanobenzene $(1.04 \mathrm{~g}, 5.28 \mathrm{mmol})$ were heated at 363 K
in dry DMSO (20 ml) with stirring under N_{2}. Dry finely powdered potassium carbonate $(1.40 \mathrm{~g}, 10 \mathrm{mmol})$ was added in portions $(8 \times$ 10 mmol) every 5 min . The mixture was heated for a further 60 min . After cooling, the mixture was added to ice water (200 g). The product was filtered off and washed with NaOH solution $(10 \% w / w)$ and water until the filtrate was neutral. Recrystallization from methanol gave a green product (yield: $1.25 \mathrm{~g}, 55.85 \%$). Single crystals (m.p. 412 K) were obtained from absolute ethanol at room temperature via slow evaporation; elemental analysis, calculated for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}$: C 79.22, H 6.65, N 6.66\%; found: C 79.10, H $6.70, \mathrm{~N}$ $6.50 \% .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 293 \mathrm{~K}\right): 1.18(s, 3 \mathrm{H}), 1.19(s, 3 \mathrm{H}), 2.34(s$, 3H), $3.01(m, 1 \mathrm{H}), 6.75-7.30(m, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 293 \mathrm{~K}\right)$: 20.37, 22.99, 23.19, 27.39, 109.84, 115.23, 120.45, 120.84, 127.22, 127.64, 136.98, 137.73, 151.00, 152.11; IR ($v_{\text {max }} / \mathrm{cm}^{-1}$): 3045-3022 (aryl CH), 2960-2870 (aliphatic CH), 2220 (CN).

Crystal data

$\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}$

$$
Z=2
$$

$M_{r}=424.52$
Triclinic, $P \overline{1}$
$a=9.268(9) \AA$
$b=10.150(10) \AA$
$c=13.115$ (13) \AA
$\alpha=93.919$ (8) ${ }^{\circ}$
$\beta=101.078(8)^{\circ}$
$\gamma=95.278(8)^{\circ}$
$V=1201(2) \AA^{3}$
$D_{x}=1.174 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 10727 reflections
$\theta=2.0-27.6^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, green
$0.50 \times 0.36 \times 0.27 \mathrm{~mm}$

Data collection

Stoe IPDS 2 diffractometer ω scans
Absorption correction: none
20244 measured reflections
5615 independent reflections
2920 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.120$
$S=0.87$
5615 reflections
292 parameters
H -atom parameters constrained
$R_{\text {int }}=0.059$
$\theta_{\text {max }}=27.8^{\circ}$
$h=-12 \rightarrow 12$
$k=-13 \rightarrow 12$
$l=-17 \rightarrow 17$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0657 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.21 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.12 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.022 (3)

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

C4-O1	$1.3579(19)$	$\mathrm{N} 7-\mathrm{C} 7$	$1.136(2)$
$\mathrm{C} 5-\mathrm{O} 2$	$1.374(2)$	$\mathrm{N} 8-\mathrm{C} 8$	$1.136(2)$
$\mathrm{C} 4-\mathrm{O} 1-\mathrm{C} 9$	$120.76(12)$	$\mathrm{C} 5-\mathrm{O} 2-\mathrm{C} 19$	$116.65(13)$

Table 2

Hydrogen-bonding geometry ($\AA{ }^{\circ},{ }^{\circ}$).
$C g 2$ and $C g 3$ are the centroids of rings B and C, respectively.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{Cg} 3^{\text {i }}$	0.93	2.784	3.705 (4)	171
$\mathrm{C} 17-\mathrm{H} 17 \mathrm{C} \cdots \mathrm{Cg} 2^{\text {ii }}$	0.96	3.21	3.818 (5)	122
$\mathrm{C} 26-\mathrm{H} 26 \mathrm{C} \cdots \mathrm{Cg} 2^{\text {iii }}$	0.96	3.31	4.143 (4)	146
$\mathrm{C} 28-\mathrm{H} 28 B \cdots \mathrm{Cg} 3^{\text {iv }}$	0.96	3.06	3.793 (5)	134

Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $-x,-y,-z$; (iii) $-x,-y, 1-z$; (iv) $-x, 1-y, 1-z$.

All H atoms were placed in calculated positions and refined using a riding model, with aromatic $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ and methylene $\mathrm{C}-\mathrm{H}$ distances of $0.96 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.20 U_{\text {eq }}(\mathrm{C})$.

Data collection: X-AREA(Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

The authors thank the Turkish Government and The University of Ondokuz Mayıs for research grant F309.

References

Atalay, Ş., Ağar, A., Akdemir, N. \& Ağar, E. (2003). Acta Cryst. E59, o1111o1112.

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Çoruh, U., Akdemir, N., Ağar, E., Kim, Y. \& Erdönmez, A.,(2002). Acta Cryst. E58, o994-o996.
Çoruh, U., Akdemir, N., Ağar, E., Vazquez-Lopez, E. M. \& Erdönmez, A. (2002). Acta Cryst. E58, o896-o897.

Decreau, R., Richard, M. J. \& Julliard, M. (2001). J. Porphyrins Phthalocyanines, 5, 390-396.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Leznoff, C. C. \& Lever, A. B. P. (1989-1996). Phthalocyanines: Properties and Applications, Vols. $1,2,3 \& 4$. Weinheim/New York: VHC Publishers Inc.
McKeown, N. B. (1998). Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Ocak, N., Ağar, A., Akdemir, N., Ağar, E., Garcia-Granda,S. \& Erdönmez, A. (2003). Acta Cryst. E59, o1000-o1001.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Göttingen, Germany.
Stoe \& Cie (2002). X - $A R E A$ (Version 1.118) and $X-R E D 32$ (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Umezawa, Y., Tsuboyama, S., Takahashi, H., Uzawa, J. \& Nishio, M.(1999). Tetrahedron, 55, 10047-10056.
Watkin, D. M., Pearce, L. \& Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.
Worhle, D. (2001). Macromol. Rapid Commun. 22, 68-97.

